
Modelling critical behaviour in terms of catastrophe theory and fractal lattices

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1981 J. Phys. A: Math. Gen. 14 1719

(http://iopscience.iop.org/0305-4470/14/7/027)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 30/05/2010 at 14:39

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/14/7
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A :  Math. Gen. 14 (1981) 1719-1734. Printed in Great Britain 

Modelling critical behaviour in terms of catastrophe theory 
and fractal lattices 

K Keller 
Institute for Information Sciences, Kostlinstr. 6 ,  University of Tiibingen, D-7400 Tiibingen, 
West Germany 

Received 5 August 1980, in final form 2 February 1981 

Abstract. A D-dimensional lattice model for a one-component fluid system exhibiting 
critical behaviour is set up. The free energy per unit volume of the lattice can be described 
by Thorn’s cusp singularity if D = 4 - ~  and E -0. The model indicates that a non- 
diffeomorphic relationship between the parameters of topological singularity theory and 
measurable quantities is feasible and leads to critical exponents which agree quite well with 
the observed ones. The non-integral dimension D of the lattice is interpreted in terms of 
fractals. 

1. Introduction 

The possibility of using Thom’s catastrophe theory to study phase transitions has been 
suggested during the last few years (e.g. Schulman 1971, 1973, Thom 1972, 1975, 
Schulman and Revzen 1972, Fowler 1972, Benguigui and Schulman 1973, Gilmore 
1977, de Alfaro and Rasetti 1978, Poston and Stewart 1978, Grandy 1979, Dukek 
1979, Keller et a1 1979, Vendrik 1979). Topological features of phase diagrams near 
isolated nth-order phase transition points (2 S n < 4) have been predicted in a qualita- 
tively excellent way. The principal advantage of applying catastrophe theory to critical 
phenomena is that it classifies the possible singularities of thermodynamic potentials 
and gives the free energy directly in polynomial form, so that no arbitrary truncation of 
a power series expansion of the free energy is required as in the Landau theory (e.g. 
Landau and Lifschitz 1975). 

Near higher-order phase transition points, the dependence of the relevant physical 
quantities on the reduced temperature t = ( T  - T,)/T, is given-in first approxima- 
tion-by power laws. T, will denote the value of the temperature T at the nth-order 
phase transition point. The exponents of these power laws are the nth-order critical 
exponents (for a detailed definition see e.g. Kadanoff (1970), Stanley (1971), Ma 
(1976)). The objective of this paper is to calculate from catastrophe theory critical 
exponents ( n  = 2) which agree with experimentally measured critical exponents. 

Let us give a short review of the work done on critical exponents in catastrophe 
theory. Up to now, there have been two approaches for the application of catastrophe 
theory to phase transition phenomena and critical exponents. 

The first one starts from some special thermodynamic equation of state near the 
critical point of interest. The most famous example is the van der Waals equation (see 
e.g. Fowler (1972), Poston and Stewart (1978)). The physical reduced variables are 
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transformed to the coexistence set of some normal form (the cusp normal form for the 
example of the van der Waals equation). This transformation turns out to be 
diffeomorphic, i.e. reversible and infinitely often differentiable, at least for the special 
cases usually analysed. If the normal form is identified, and if the (diffeomorphic) 
relation between parameters of catastrophe theory and reduced physical variables is 
known, then it is possible to calculate critical exponents. This method reproduces the 
critical exponents of Landau theory (e.g. Poston and Stewart 1978). 

If one attempts to improve the numerical values for the critical exponents, a 
suggestive first trial is given by the change of Thom’s ‘Maxwell convention’, because the 
coexistence set depends on the convention chosen to decide between competing 
minima of the normal form. But it has been proved that no change of the convention 
will alter the exponents (Poston and Stewart 1978). 

However, we want to emphasise that this method only describes a small subset of 
thermodynamic state equations by means of catastrophe theory. There is, for example, 
no diffeomorphic transformation known from Schofield’s equation of state (e.g. 
Schofield 1969, Kortman 1972) to a coexistence set of some normal form. 

More powerful is the second approach (e.g. Schulman 1971, Schulman and Revzen 
1972, Vendrik 1979). It starts from some thermodynamic potential G : X  x U + R, 
with G,(x) bounded below, and assumes G(x, u0) to be a ‘singularity’ at some point 
U O E  U. X is the thermodynamic state space and U some space of external ‘control’ 
variables. ‘G(u, x) a singularity’ means, more precisely, that the family G,(x) has a 
singular member Guo(x), dividing G,(x) into qualitatively different classes. If G(u,  x) is 
a smooth function with respect to x and dim U S  14 (Arnold 1974), then the struc- 
turally stable unfoldings of that singularity can be classified with the help of the normal 
forms of catastrophe theory. That means almost all structurally stable unfoldings of 
G(x, UO) are diffeomorphic to some normal form specific for the order of the singularity 
G(x, U O )  = Gu0b). 

If one assumes (x, U )  to be analytic functions of some reduced physical variables, the 
above approach reproduces the Landau theory and the critical exponents of Landau 
theory (Schulman 1973, Poston and Stewart 1978, Keller 1979). Therefore non- 
analytic relations between physical variables and catastrophic variables have been 
assumed-but on an entirely ad hoc basis (Benguigui and Schulman 1973, Schulman 
1973). 

In this paper we set up a model that justifies a non-analytic relation. The idea of our 
model originates from the simple statement that critical exponents calculated in a 
two-dimensional Ising model are quite different from the critical exponents calculated 
in a three-dimensional Ising model, although in both models the type of the Hamil- 
tonian is the same. Obviously the temperature dependence of the magnetisation is 
related to the dimension of the Ising model. 

In § 2 we propose a model for a one-component fluid. The model is a straightfor- 
ward generalisation of the lattice-gas model. Imagine that for each of N different 
samples of the fluid m measurements have been made at time to. The result is a set of N 
vectors w, E R“ (1 < i S N ) .  To introduce an arbitrary spatial order on the above set of 
measurements, we assign each vector to one and only one point z ,  of a lattice L with 
dimension D. Iff N measurements completely describe the real fluid for a given time to, 
then the lattice L is a complete and static description of the fluid for the time to. Now the 
particles of the fluid interact mutually and, therefore, repeating the set of measurements 
at the same parts of the fluid, but at some time t > to, will most probably not reproduce 
the same results; i.e. wl(t) # w,(to). To simulate this effect, one has to assume an 
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interaction between the vectors fixed at each lattice point. We introduce a Hamiltonian 
confined to nearest-neighbour interaction. 

For the example of the one-component fluid, we specify the measurement vectors to 
have only one component, i.e. to be scalars (the ‘occupancy state variable’). This 
specification is not crucial and is only made for simplification. 

The next step is to define unit volumes with the lateral dimension of the order of the 
correlation length 6. We introduce a free energy F per unit volume and observe the 
effect on F if the correlation length is enlarged. We show that near an isolated 
second-order phase transition point the free energy per unit volume is represented by 
the unfolding of the cusp singularity V~(X, 0,O). 

In § 3, we attack the determination of the dimension D of the lattice via scaling 
arguments applied to the cusp normal form and to the correlation function. It is found 
that D depends on the codimension of the cusp normal form and some small parameter 
~ ( 0  < 77 < 0.1). In accordance with renormalisation group considerations, the dimen- 
sion of the abstract lattice will be approximately 4 (3.8 s D < 4). Somewhat arbitrarily, 
we choose D = 3.92 and again use scaling arguments, this time applied to the abstract 
lattice ( D  = 3.92) and to the real fluid (U = 3). This method gives relations between: 

(1) the abstract mathematical order parameter x and the reduced physical 
density p ;  

(2) the unfolding parameter a 2  and the reduced temperature t. 
We insert the relations x ( p )  and a2( t )  in the standard cusp normal form and calculate 

critical exponents. These exponents agree quite well with the experimental obser- 
vations for CO2, Xe and He3 (Stanley 1971, Ma 1976). 

The ‘broken’ dimension D = 3.92 is a potential embarrassment to the human mind. 
For this reason the mathematical concept of spaces with non-integral dimension is 
introduced in 9: 4;  however, in a more speculative way. We illustrate an example for a 
space with non-integral Hausdorff-Besicovitch dimension (Mandelbrot 1977) and 
define ‘fractal lattices’ (see also Gefen et a1 (1980)). Scaling, differentiation and 
integration remain unchanged on fractals, and therefore our arguments leading to the 
normal form k; and the relations x(p), a2( t )  are not affected if the dimension of L is 
broken. However, no attempt is made to elucidate the physical meaning of the fractal 
lattice L, i.e. to relate clustering in the fractal lattice or the real fluid to the dimension of 
fractal lattice and fluid. 

In the last section we summarise our findings and outline developments for 
higher-order phase transition phenomena (neglecting logarithmic corrections). 

The Appendix will give some additional information for readers not familiar with 
the application of catastrophe theory to phase transition phenomena. 

2. A lattice model of a fluid system 

We consider a one-component fluid system made up of N molecules ( N  = loz3). If v is 
roughly the volume of one molecule (typically a few A3), we divide the whole volume V 
of the fluid system into No cells of size U, No = V/u. For a fluid system we surely obtain 
No > N. Now we introduce the occupancy e as a state variable. A cell is in the occupied 
state e = 1 if it is occupied by the centre of one molecule. Otherwise the cell is said to be 
in the empty state e = -1 (Kittel 1969, Stanley 1971). 

An abstract lattice model of the fluid is constructed as follows. We measure the 
occupancy e for each cell to obtain a complete set of No measurements el,  e2, . . . , eNo. 
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Then each measured value ej  is fixed to one and only one lattice point zi of the No points 
of a D-dimensional lattice L. By this, each cell (or subsystem) corresponds exactly to 
one site z of a D-dimensional isotropic lattice L, with lattice spacing A-’. At each 
lattice site, the micro-observable e ( z )  (i.e. the state of the corresponding subsystem) has 
the value 1 or -1. Neighbouring cells do not necessarily correspond to neighbouring 
lattice sites, because for D # 3 such a correspondence is quite impossible to establish. 

We further replace the real interaction in the fluid system by an artificial one in the 
lattice model, analogous to the familiar lattice-gas model (Kittel 1969, Stanley 1971). 
This means we assume that interaction takes place only between neighbouring lattice 
sites. Obviously, D > 3 corresponds to something like averaged long-range interaction 
in the real fluid because each cell interacts with more than six other cells. 

The partition function Z of the lattice is given (Stanley 1971) by 

where p = l /kT,  k is the Boltzmann constant, T is the temperature, J is a coupling 
factor and ((22’)) denotes summation over nearest neighbours z’. The asterisk in (2.1) 
means that the summation in (2.1) is restricted to those configurations which satisfy 

The total free energy F is given by 

F = -p-’ l n (z ) .  (2.3) 
For the order parameter y (the ensemble average of e)  we obtain 

The following technical assumptions will be made. 
(A l )  The lattice is infinitely extended. This is reasonable because N is very large. 
(A2) For calculations we can replace the sums in (2.1)-(2.4) by integrals. 
The first assumption implies that the partition sum and the total free energy become 

infinite. To obtain finite quantities, the theorem of the thermodynamic limit is invoked 
so that it is possible to divide the infinite lattice into finite sublattices or blocks, which 
are essentially similar to the whole lattice. These blocks will be called ‘unit volumes’, 
and the extension of each block is large in comparison with A-’, but the extension is in 
the order of magnitude of the correlation length. Then (2.1) can be replaced by the 
approximation 

m 

z q z i  (2.5) 
i = l  

where 2, is the partition sum of one unit volume. From (2.5) it follows that 

where Fi is the free energy per unit volume i, Fi = -p-’ ln(Zi). Since all blocks are 
assumed to have the same size, we have Fi = Fi for all i, j and so can drop the subscripts, 
i.e. define F = Fi = ‘free energy per unit volume’. Disregarding small statistical fluctu- 
ations, the order parameter y has the same value in the unit volume and in the whole 
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lattice. If one knows the behaviour of the order parameter in one block, one knows the 
behaviour of the order parameter in the entire system. 

One block in the lattice corresponds to an ensemble of cells in the real fluid. 
Therefore the order parameter y should be related to the fluid density p’. 

Now the question arises of how large a block should be if one changes the reduced 
temperature t. Since the correlation length 6 diverges for T + T,, the renormalisation 
group procedure must be applied to the abstract lattice (Ma 1973, 1976, Wilson and 
Kogut 1974). This means that we have to collect lattice sites inside a volume sD,  then 
calculate the mean value d of e(z)  in s D  and then assign this mean value to a site z’ of a 
lattice of the same kind, i.e. with the same dimension, extension, lattice spacing and unit 
volumes. Therefore the renormalisation group can be interpreted as a symmetry group 
&? on the abstract lattice (Ma 1976). One element R, E &? changes e (z)  continuously in s 
to a new value e‘(z) E [-1, 11, thus smoothing {e(z )} .  Furthermore, R, generates 
powers of e ( z )  in the Hamiltonian of the transformed partition function. The cal- 
culation of H ’ =  R,H requires assumptions ( A l )  and (A2). 

We need only two results of renormalisation group theory. The first one states that 
the correlation length scales as 6 Cc /ti-” and v = $1 + (4 - 0 ) / 6  + 0 a ]  for critical 
phenomena (Wilson and Kogut 1974). This will be used in § 3. The second states that 
in each case - l < e ( z ) G l .  Then the ensemble average y =(e )  is limited too, i.e. 

From (2.1), (2.3) and (2.4), it is obvious that the free energy is a continuous function 
of the order parameter y even after the application of R,. Likewise F(y) ,  the free 
energy per unit volume, is continuous on the compact interval [ -1 ,1]~ iw and for that 
reason-due to Weierstrass--F(y ) can be approximated by a series expansion 

-1 s y 6 1. 

M 
&U, y )  = ujy’ 

j = l  

and lF-Fl+O if M +  CD. Replacing the sums in (2.1)-(2.4) by integrals, we obtain 

Here g denotes a multidimensional parameter generated by l? from the small number 
of parameters in the initial Hamiltonian (Ma 1976, Wilson and Kogut 1974). 

From (2.7) and (2.1) it follows that minima of E correspond to maxima of 2 and, 
therefore, to macroscopic states (see e.g. Kittel (1969)). Hence, the set 

X = {(y, u)ldfi(y, u)/ay = 0 and azF(y, u)/ay2 > O }  

describes macroscopic states (distinguished by the order parameter). At a critical point 
U = uo in the phase diagram two macroscopic states merge into only one macroscopic 
state. This merging (or branching) of states implies that $(y, UO) possesses powers in y 
higher than third order, i.e. fi(y, u0)  = u04y + uo5y5 + * * . For this reason, criticality 
implies that Fo = p(y,  uo) is a singularity not of Morse type but of Thom type. Let u0 be 
the origin in U = {ului E iw} and j j  = (y  - yO)/yo, where y o  = ~ ( U O )  is the value of y at the 
critical point u0;  then So = P(jj, 0). 

must be assumed to be bounded below-otherwise the integral does not 
exist. In this case, according to Thom’s theorem, the simplest singularity F0 has 
codimension two and its stable unfoldings are diffeomorphic to the cusp normal form V, 
(Thom 1975). This means that there exists a diffeomorphism i,b which transforms (9,  U )  

4 

In (2.7) 
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into (x, U ’ ,  u2,  u3,  . . .). Only the parameters x, U ’ ,  u2 are relevant because the remain- 
ing parameters u3,  . . . merely give rise to a remainder Q(u3,  . . ,) independent of x. Q 
will not affect critical behaviour. Even if y’ is not a one-dimensional state variable (as in 
the fluid case) but an r-dimensional state variable, the statement remains true that Q 
does not affect critical behaviour; then the remainder Q is a quadratic term of Morse 
type in at least r - 2  state variables. Consequently, up to diffeomorphisms and an 
irrelevant term Q, the free energy F* per unit volume is given by the normal form of the 
cusp unfolding, and F* is no truncation, but an exact polynomial: 

F =fi(y’, U )  a F*(x, a )  =$x4+4a2x2+ a l x  + Q. (2.8) 
C“5 

The symbol ‘ A  a B’ means that A is diffeomorphic to B. For fixed a l ,  a2 the minima of 

FW give the stable states, i.e. the deepest minima of V2 give the most probable stable 
states. That is the reason for the so-called ‘Maxwell convention’. This convention is 
due to Thom, and states that the deepest minimum of a normal form gives the physical 
stable state. 

In what follows, we are interested in the relation @ between x, ul ,  u2 and measurable 
quantities of the fluid such as the reduced density p = (b - , & ) / ~ c ,  the reduced tempera- 
ture t = ( T  - Tc)/ T,, etc. Gibbs’ phase rule requires there to be precisely two indepen- 
dent variables in the phase diagram of the fluid. We choose for them t and the reduced 
pressure p = (P-Pc)/Pc. Consequently, the relation (x, U ’ ,  a2) = @(p, p ,  t )  is bijective. 

C== 

3. Scaling and critical exponents 

As the fluid system approaches the critical temperature T,, the correlation length 5 
diverges as t c c  Itl-” if t+  0, and 5cc Itl-”’ if t + 0-. Therefore we have to enlarge our 
unit volume by the factor [, as sketched in figure 1, where the effect of one element R, 
on the lattice is illustrated. Let us now assume that the fixed point of 2 in parameter 
space is reached, and let Fg be the free energy per unit volume at this fixed point. To 
find the dependence of F* on x, U ’ ,  u2, we have to move away slightly from the fixed 
point (critical point), i.e. to unfold F t .  This means in principle, that we have to ‘invert’ 
the renormalisation procedure, and apply RL1 to Hg, where Hg is the Hamiltonian 
giving Fg. This cannot be done explicitly, because it is impossible to construct one 
definite member of an ensemble from some mean values of that ensemble. However, 
scaling arguments remain unaffected. 

R1 is the identity in 2, and from 

RSR, = R,, (3.1) 

one concludes that RT’ = I Z - 1 .  It is easily seen that the correlation length shrinks if we 
move away from the fixed point, and R,’ = R,-1 implies that we have to reverse the sign 
in the exponent of [ ( t ) .  ‘Inverting’ the renormalisation procedure means, therefore, 
length scaling by s cc IllY if t > 0 and by s a  Itl”’ if t < 0. 

A given volume Vl transforms according to 

vs = s-”vl. (3.2) 

The total free energy naturally is invariant under R .  Then, according to (3.2), the free 
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Figure 1. Application of R, with s = 2 to a unit volume. 
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energy per unit volume transforms as 

F, = sDF1. (3.3) 

If the lattice model is to be a reasonable approximation to the fluid, then a change of the 
correlation length in the fluid and in the lattice should produce the same effect in the 
free energies per unit volume of both systems. We change the length scale in the lattice 
by s and in the fluid by r according to 

r a 1 t I " 2 ,  (3.4a) 

sa I t l " 1 .  (3.46) 

The requirement that a change of the correlation length produces the same effect in 
both the fluid and the lattice means equality of the free energies per unit volume in both 
systems after the transformation, if these free energies were equal before in the fluid 
(subscript 2) and in the lattice (subscript l), i.e. rDzasD1.  From (3.3) and (3.4) it then 
follows that 

Dlvl= 0 2 ~ 2  = 3V2. (3.5) 

We now use (3.3), (3.5) and the correlation function G ( k )  in the lattice L to determine 
x ( p ) .  Let e*  = (e - e,)/e, be the reduced micro-order parameter, where e, is the value of 
e at the critical point. The correlation function is defined (e.g. Ma 1976) by (neglecting 
the subscript '1') 

G ( k )  = dDz((e*(z) -(e*))(e*(0)-(e*)))e-ik' 
V 

(3.6) 

If the volume V of integration is large enough, (3.6) can be rewritten as 

(3.7) 
1 

G ( k )  = - 
V 

dDz dDz'(e*(z) e * ( z ' ) )  e-ik(z-z'). 

From this it follows that G ( k ) E  (e* density)' x (volume). A change of the unit of length 
yields ( e * ) +  s q ( e * ) ,  whence 

G (sk) a s 2 q - D .  (3.8) 

On the other hand, it is known (Stanley 1971, Ma 1973, 1976) that 

G ( k )  a lk I-'+' (3.9) 

and this scales as 

G(sk)  a s-'+'. (3.10) 

Comparing (3.8) with (3.10), we obtain 

4 = (D - 2 +  77)/2. (3.11) 

On the coexistence line one has al  E O  and u2 = -x' from (2.8) and the Maxwell 
convention. Therefore Vz(x, a l ,  u2)  = -ax4 on the coexistence line, and from (3.3) it 
follows that x 4 a s D  or 

x a sD'4. (3.12) 
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Now, due to (2.8), x a 

cusp normal form 

= ( e * )  and comparing (3.11) with (3.12), it is seen that for the 
C" 

(3.13) 1 ~D'2-77 

or 

77 = 2 - 012 .  

We note that 77 = 0 for D = 4; i.e. x CC sq with q = 1. 
The experimental value for the exponent 77 is very small, namely 0 s 77 s 0.1. That 

value inserted in (3.13) limits the dimension to the range 3.8 6 D s 4. In other words, 
the cusp model gives a good approximation to the free energy per unit volume only if the 
dimension of the abstract lattice is close to four. We choose D = 3.92, because this 
produces a good numerical fit for the critical exponents. 

One can calculate the correlation function for the real fluid (D = 3), and the same 
arguments as in (3.6)-(3.11) lead to 

9 2  = (3 - 2 + 772112 = (1 + 772)/2. (3.1 l a )  

From the change of the reduced density p of the fluid (D = 3) with t we obtain, using 
(3,11a), the relation p ( x ) :  

&1+%)/2" t U 2 ( l+r12)/20=(t~1)D1(1+rl  2 /  1 6 "(x 2 ) (1+v2)/3 

or equivalently, with 8 = 3/[2(1+ 77211, 

x ( P I  Pe .  (3.14) 

The results obtained so far do not depend on the sign of the exponent in (3.4). However, 
to determine the form of a2( t )  this sign plays an important role. On the coexistence line 
we have a2 = -x as stated above. From the scaling of x 2  by s it follows for a2 that 

a 2 ( t )  CC t A  (3.15) 

2 

with A = vlD1/2. 
Renormalisation group considerations (Wilson and Kogut 1974) show that 2 v = 

1 + e/6 + ~ ~ 1 2 5  & .  . . and E = 0.08 gives vl = 0.506. From (3.4) we find for the fluid that 
v2 = v1D1/3 = 0.662 and (3.12) yields v l  = ~ / 2  = 0.04. 

The value of 772 cannot be deduced from the model: we assume 772 = 0.08. Then 
equations (3.14) and (3.15) give the exponents 8=1 .39  and A =0.99, i.e. xcCp1.39, 
u 2 ~ t 0 . 9 9 .  Then it is easy to calculate the following critical exponents from the cusp 
model for the fluid: 

CY = c Y ' = ~ - ~ A  ~ 0 . 0 2 ,  y =  y'=A(48 -2)/28 =p(S - 1)= 1.27, 

p = A128 = 0.36, S = 48 - 1 = 4.56. (3.16) 

From (3.5) one obtains 

v = ~lD1/3 = 0.67. (3.17) 

For comparison we extract from Stanley (1971) and Ma (1976) the critical exponents 
shown in table 1. 
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Table 1. Critical exponents. 

Material CY a t  Y Y’  P s U t  

CO2 (St) =0.1 -0.1 1.35 -1.0 0.34 4.2 - 
Xe (St) - C0.2 1.3 =1.2 0.35 4.4 0.57 
CO2 (Ma) -0.12 -0.12 1.2 1.2 0.35 4.2 - 
Xe (Ma) 0.08 0.08 1.2 1.2 0.34 4.4 - 
He3 (Ma) <0.3 c0 .2  1.15 1.15 0.36 - - 

4. Fractals 

Finally, we have to explain what one may understand by a lattice with non-integral real 
dimension D = 3.92. To this end the notion of ‘dimension’ must be defined. Let M be a 
set and d a metric, d : M  x M +  [w with d ( x ,  x) = 0 Vx E M ;  d ( x ,  y )  = d ( y ,  x ) > O  Vx, y E 
M and x # y ;  d ( x ,  z )  s d ( x ,  y )  + d ( y ,  z )  Vx, y ,  z EM. (M, d )  is a metric space. We 
define its Hausdorff-Besicovitch dimension in the following way (Mandelbrot 1977). 

Let V,(x) := { y l d ( x ,  y )  G E, Vy EM} be the ball surrounding x EM. We associate 
with U, (x) a real positive number as an intrinsic Hausdorff measure for the volume of 
UF(x), namely 

o < 1 U, ( X ) I  = E D(r(&D/r(i + $0) < 00 

where r is the Gamma function, and D is a real positive number to be specified 1ate.r. 
Let N be a compact subset of M. Then there exists afinite number N(E) of balls U, 

covering the whole subset N. The subset N has, therefore, the approximate finite 
measure 

O < J N ~  =~(&)&~(r ( ; ) )~ / ry i  + $ D ) < ~ o .  (4.1) 

If, for every compact subset of M,  the limit E + 0 of (4.1) is a unique, finite and non-zero 
number and independent of the way E tends to zero, then M has Hausdorff-Besicovitch 
dimension D. This condition fixes the value of D, because the inequality O <  
lim[N(E)EDT(4)D/T(1 +io)]< 00 could not hold for all N E M  if D were arbitrary. 

In contrast to the topological definition of dimension, we are, of course, no longer 
confined to integer dimensions, D E NO ={O, 1 ,2 ,  . . .}. Spaces with D &  NO have been 
introduced and are called by Mandelbrot (1977) ‘fractals’. 

We illustrate this by a fractal object called the ‘Sierpinski sponge’ (figure 2). One 
cannot simply sketch this fractal, but only aefine it in an iterative geometric way. 
Suppose we are given a three-dimensional cube with sides of length one. If we divide 
each side into three we obtain 27 subcubes. We remove from the cube the central 
subcube and all those subcubes which have one face in common with the central 
subcube. There remain 20 subcubes. By this procedure the volume Vo = 1 of our 
geometrical object is reduced by a factor 8 and its surface area FO = 6 is enlarged by a 
factor 2. 

Repeating the above construction once for each of the remaining subcubes produces 
the same reduction of the volume and enlargement of the surface area for the remaining 
geometrical object. Thus, if the construction is iterated n times, the resulting object has 
volume 

v = (gy (4.2) 
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Figure 2. Construction of the Sierpinski sponge up to n = 2 .  

and surface area 

F = 6($)". (4.3) 

From (4.2) and (4.3) we see that V + 0 and F + CO as n + CO. If n = CO the object is called 
the 'Sierpinski sponge'. This is a fractal whose three-dimensional volume is zero and 
whose two-dimensional surface area is infinitely large. 

To determine the finite measure of this fractal, we use definition (4.1) with E = (4)" 
and D = lg(2O)/lg(3) = 2.7268. Then N ( E )  = 20", and by virtue of the identity x = 
101""' one finds that 

i.e. 0 <IN(&)/ = I$JD/r(1 +$D) < CO. Since N(E) is actually independent of E, we may 
choose E = 0. Therefore, 

N = N ( O )  = ~.(S)l~(~~)/l~(~)/r(i  +ig(20)/ig(3)) = 0.51 

is the measure of the fractal 'Sierpinski sponge'. 
Fractals have the following important properties. 
(1) The definition (4.1) of the dimension of a fractal simplifies with r = 1 / ~  to the 

following (Mandelbrot 1977): 

D = lim ( lg [N(~) ] / lg ( l /~ )}  = lim {d lg[N(r)J/d lg(r)}. (4.4) 
F'O r+cC 

(2) Although a fractal seems to be a totally inhomogeneous object when seen from 
outside by embedding it in Euclidean space (e.g. figure 2), the fractal is actually a 
completely homogeneous medium (like a Euclidean space) when looked at within its 
own fractal dimension, i.e. if one is sitting in it. This is why the fractal possesses in a 
natural way the property of self-similarity, i.e. each part of it is similar to the whole 
object. Self-similarity is the reason for scaling laws, because f r o m N ( r ) s r r - D  we obtain 
N(ar )  CC a-DN(r).  
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(3) Integration and differentiation, defined on spaces with D E N, can be extended 
to fractals (Mandelbrot 1977). Therefore equations like (2.7) remain true also for 
fractals, because 5, d”z H ( e ( z ) ,  g) has a definite meaning. 

(4) Suppose that there exists a minimum length scale E~ in the fractal such that all 
points x, y of the fractal satisfy d ( x ,  y )  5 so. Then we call the resulting object a fractal 
lattice, because for D E N it reduces to a normal D-dimensional lattice. 

There are some direct approaches to applying the concept of fractals to physical 
phenomena appearing in phase transitions (e.g. Stanley et a1 1976, Stanley 1977, 
Mandelbrot 1977, Gefen et a1 1980). The hierarchical clustering of molecules in a 
D-dimensional system is interpreted as formation of a fractal with efective dimension 
D, <D. If we try to transcribe this picture to the abstract lattice, we suspect the 
appearance of clustering for the correlated regions of e ( % )  in the fractal lattice with 
D = 3.92. The effective dimension of the clustered subset approaches D, = 3 as t + 0. 
Nevertheless, this conjecture is without any proof so far and not the aim of this paper. 
We confine ourselves to the existence of spaces with ‘broken dimension’ without 
physical interpretation. 

Some further examples for the occurrence of fractals in physical sciences are found 
in information theory (Berger and Mandelbrot 1963) and are also encountered in the 
theory of electromagnetic waves (Berry 1979a, b). 

5. Conclusions 

In § §  2 and 3 we constructed a model for a one-component fluid, representing it by a 
fractal lattice with dimension D = 3.92. The free energy per unit volume of the fractal 
lattice turned out to be diffeomorphic to an unfolding of the cusp singularity. The 
relation between the mathematical parameters x, u l ,  u2 of the cusp normal form for the 
free energy and the physical parameters p, t, p was established by applying scaling 
arguments in the lattice and in the fluid. This relation was non-analytic for D = 3.92. 

However, in (3.13) we can choose 7 = O  and then the concept of fractals is not 
necessary for critical and tricritical phenomena, but its introduction is imperative for 
tetracritical and higher-order phenomena (Giittinger and Keller 198 1). If we choose 
7 = 0 as in the Landau theory, then (3.13) reduces to D/2 -2  = 0 or D = 4. For the 
butterfly singularity (describing tricritical phenomena), equation (3.11) remains 
unchanged and (3.12) becomes x ccsDI6. Consequently, we find D = 3 for the dimen- 
sion of the lattice model describing a tricritical point. However, for the star singularity, 
which represents a tetracritical phenomenon, the lattice dimension should be D = g. 
This is in accordance with the fact that for each of the dimensions 4,3, $one observes the 
appearance of a new stable type of Hamiltonian for the fixed point in renormalisation 
group theory (Ma 1976, Sinai 1977, Amit 1978). 

Table 2. Relation between lattice dimension, standard normal forms and order of phase 
transitions. 

Phenomena Lattice free energy Lattice dimension (q = 0) 

Critical c u s p  4 
Tricritical Butterfly 3 
Tetracritical Star 8 

3 
- 

. . .  . . .  . . .  
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The calculation of n-critical exponents for the butterfly ( n  = 3) and the star singularity 
(n = 4) within the framework of the above proposed lattice model will be discussed 
elsewhere (Guttinger and Keller 1981). 

The calculated critical exponents agree well, though not exactly, with the experi- 
mental values. This seems to be due to the fact that some approximations have been 
made. First, we have required a highly isotropic lattice. Second, we have assumed the 
lattice to be infinitely extended. Third, we have required the possibility of formation of 
unit volumes. Finally, the restriction to nearest-neighbour interaction in a (3.92)- 
dimensional lattice may be relaxable. Despite all these approximations, most of our 
theoretical values lie within the range of experimental values shown in table 1. 
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Appendix 

This section includes two topics for readers not familiar with the application of 
catastrophe theory to phase transitions. For a modern and detailed review we refer for 
example to Poston and Stewart (1978), Vendrik (1979) or Stewart (1980). 

( a )  Brief exposition of Thom's theorem classifying structurally stable unfoldings 

Let R" denote n-dimensional real Euclidean space. A smooth potential function V is 
an infinitely differentiable mapping V :  R" + R. Two potentials V I  and Vz are C" 
equivalent ( V 1  a Vz)  if there exist diffeomorphisms h : R" + R" and k : R+ R such that 

V ,  0 h = k 0 VI, i.e. if the diagram 
Cm 

Vl 

i I 
R" - R 

is commutative. A diffeomorphism is a reversible C" function (infinitely often 
differentiable and each time reversible). 

Two potentials are near in the C" topology if they and all their derivatives are close 
on each compact subset of R" (Whitney topology). A potential Vis  structurally stable if 
within some neighbourhood of V (in the C" topology) all potentials are C" equivalent. 
Structural stability is guaranteed by a non-vanishing Hessian, i.e. if for all m E R" 

a 2 v ( m ) / a x l  axl . . . a 2 v ( m ) / a x l  ax ,  

a 2 v ( m ) / a x ,  axl . . . a 2 v ( m ) / a x ,  ax, 
G ( m )  = det 

(XI,. . . , x ,  denote local coordinates in R"). 
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A smooth potential function Vo(m)  has a singularity at mo if its derivative V Vo(mo) 
vanishes (V is the Nabla operator with respect to m ) .  If in addition f i ( m o )  = 0 then 
Vo(mo) is not structurally stable; there exist potentials V near Vo (in the C" topology) 
which are not C" equivalent to Vo. 

Neglecting further subtleties as 'germs', a k-parameter unfolding of Vo is a smooth 
family W(m, E )  such that W(m, 0) = V o ( m )  and E E Rk. VO is a singularity of the family 
W ( m ,  E ) .  The number k is called the codimension of the unfolding. 

A universal unfolding is one with minimal codimension and the property that all 
other unfoldings can be induced from a universal unfolding. Let the codimension be 
finite; then one can state that a universal unfolding of Vo is given by the family 

k 

w ( m ,  U )  = v d m )  + C u,g'(m) 
j = 1  

where k is as small as possible. A universal unfolding is unique up to equivalence and 
'almost all' potentials V near Vo are C" equivalent to one member of the family W. 
'Almost all' means that in the C" topology (Whitney topology) the family W forms an 
open dense subset in the space of all potentials near Vo. 

Furthermore, this implies the structural stability of the family W(x,  U), because any 
small perturbation of a member of W is equivalent to another member of W. The 
theorem of Thom classifies the structurally stable unfoldings. 

Thom's  theorem. Given a smooth family of potentials W(x,  U); W :  R" x Rk + R, then 
for k G 4 almost any singularity of W is equivalent to one of a small number of types 
called 'elementary catastrophes'. The number of types depends only on k and not on n. 

This means that almost all structurally stable unfoldings are equivalent to some 
normal form, the normal form being defined as structurally stable unfolding of an 
elementary catastrophe. 

For reasons of simplicity, we have formulated elementary catastrophe theory only 
for smooth potentia.1 functions on Euclidean spaces; nevertheless, the theory is true also 
for smooth potential functions on real manifolds. 

In the application of catastrophe theory to thermodynamics, E = R" represents a 
space of internal state variables (e.g. Schulman and Revzen 1972, Schulman 1973, 
Vendrik 1979) and U = Rk represents a space of external control variables. The 
potential V : E  x U -+ R is a thermodynamic potential, usually considered as some kind 
of free energy (e.g. Schulman 1973) or the Gibbs potential (e.g. Dukek 1979). 

( b )  The cusp normal form and vat1 der Waals equation 

This topic illustrates one ingenuous way of applying catastrophe theory to phase 
transitions. The example chosen is very famous amongst theoreticians engaged in 
catastrophe theory (e.g. Fowler 1972, Poston and Stewart 1978). 

Consider the van der Waals equation of state for a one-component fluid: 

(P  + a /  V')( V - b )  = NkT. (AI) 

Here P is the pressure, V is the volume and T is the absolute temperature of the fluid. 
The constants k and N .  are the Boltzmann constant and Avagadro's number respec- 
tively. The constants a and b depend on specific properties of the fluid's molecules. 
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According to Tisza's rule, the critical point (Pc, V,, TJT is determined by solving 
(Al )  and the additional equations 

(aP/aV)T =o ,  (a2p/av2)T = 0. 

This yields Pc = a / 2 7 ,  V, = 3h  and T, = 8a/27Nkb.  Inserting the reduced coordinates 

P = (P  - PC)/PC, = ( V -  V C ) / V C ,  t = ( T  - Tc)l T,, 

in equation (A l )  leads by some elementary operations to 

~ ~ / ( v + l ) ~ + f ( 8 t + p ) v / ( v  +1) -$ (8 t - -p )=O.  042) 

Introducing the 'order parameter' x = -u / ( v  + l ) ,  the above equation can be rewritten 
as 

x 3  + i ( 8 t  + p ) ~  - f ( 8 t  - p )  = 0.  (A3) 

The linear reversible coordinate transformation B : ( x ,  p ,  t) 'r+(y,  al,  aZ)=, specified by 

B=[:  1 0 0  --E]. B P I = [ :  0 2 "1, 
- -  0 -1 3 

- 3 3  16 16 

transforms ( A 3 )  into 

y + aZ y i- a = 0. (A41 

~ ( y ,  al, a 2 )  = + y 4 + i a 2 y 2 + a l y .  ( A 9  

Integrating equation (A4) once (with respect to y )  yields the real potential function 

This potential function is identical to the normal form of the unfolding of the cusp 
singuiarity U/z(y,  0,O) I= $ y 4 .  (The expression 'normal form of the unfolding of the cusp 
singularity' is usually abbreviated by the terms 'cusp potential' or 'cusp normal form'.) 

The cusp singularity has codimension two and is C" equivalent to nearly all 
singularities with codimension two. A linear and reversible transformation like B is 
naturally a C" function (all derivatives are vanishing), and likewise B-l is a C" 
function, i.e. B is a diffeomorphic transformation between the cusp singularity and 
some 'physical singularity' leading to the van der Waals equation of state. 

Nevertheless, B diffeomorphic seems to be a chance hit, true for the special case of 
the van der Waals equation of state. If one constructs a mathematical description of a 
physical system governed by some real potential function, and classifies the possible 
singularities of that potential function according to Thom, no information about the 
relation between the variables of that potential and real physical quantities is necessary 
for the classification. The classification is determined solely by the codimension of the 
potential's singularity (Poston and Stewart 1978, Stewart 1980).  

Let us return from this deviation to further discussion of the above example. The 
macroscopic states are-according to the Maxwell convention-given by the absolute 
minima of V2(y, a ' ,  a2). A phase transition of the first kind occurs for competing 
minima, i.e. along the line C ={(al, a2)lal=0 and aZ<O} (coexistence line). A 
transformation with B-' leads to the coexistence line in physical coordinates (phase 
diagram) 

P = 4(Pc/ Tc)( T - T,) + P,. ('46) 
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For water steam this line coincides for small (P-P,)/P, and ( T -  T,)/Tc with the 
coexistence line calculated from the van der Waals equation with the help of Maxwell's 
construction (Keller 1979). 

Some straightforward calculations (e.g. Poston and Stewart 1978, Keller 1979), 
starting with (A5) and using the linearity of B-l, result in the critical exponents p = 0.5, 
S = 3, y = 1, y' = 1, cy = 0, cy' = 0. These exponents disagree with the experimental 
results (e.g. Stanley 1971). 
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